If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.9t^2+3t-1700=0
a = 0.9; b = 3; c = -1700;
Δ = b2-4ac
Δ = 32-4·0.9·(-1700)
Δ = 6129
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6129}=\sqrt{9*681}=\sqrt{9}*\sqrt{681}=3\sqrt{681}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3\sqrt{681}}{2*0.9}=\frac{-3-3\sqrt{681}}{1.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3\sqrt{681}}{2*0.9}=\frac{-3+3\sqrt{681}}{1.8} $
| 19x+47/20=9 | | 18+2y=3y | | −3(x+15)=15 | | 0.9t^2+4.5t-1500=0 | | 3x-6-2x+14=2x+17 | | n+4n=2n-33 | | -6x=-5x+2 | | 4^(x-8)=7 | | 2+b=15.7 | | 4^x-8=7 | | 14(-x-5)=2(-2x-20) | | 3x-5/4+x+18/5=9 | | x+4)2=361 | | 10x+4=6x=20 | | 1x+8=31 | | 3p+-10=5 | | 3(c+4)=5c-2 | | 3p+10=5 | | 12c+18=12 | | 3.5=1.7-0.4y | | 9j+18=0 | | 3r+10+3r+10=2r-20 | | 7s+13=4s-7 | | 3a/4-5a/2=11/2 | | 2x+8(x-3)=2(x-2) | | -3n/18=2/18 | | 10.23x-43=14x+20 | | 2p+10=-3p | | 2(9x11x)=-5 | | 9u-4=86 | | 3n-8=-10=3n | | -2y+8=-12 |